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Abstract-A model is described for the solidification of a dilute alloy, in which the equations of heat and 
mass transfer are coupled through the conditions at the moving phase boundary. The equations are 
rewritten in conservation form, and this suggests a method for finding numerical solutions without 
explicitly tracking the phase boundary. Although the method cannot be rigorously justified, it gives 
results which compare well with known analytical solutions in a situation where good agreement might 

not have been expected. 

NOMENCLATURE 

b, slope of phase boundary in (u, ~1) plane ; 
c, concentration of impurity; 

Q diffusion coefficient ; 
H, enthalpy; 
k,,k,, slope of solidus and liquidus lines in (u,c) 

plane ; 
L, latent heat; 

s(t), position of phase boundary; 

t, time ; 
4 temperature ; 

L!, chemical activity; 

.y, spatial variable. 

Greek symbols 

K, thermal conductivity; 

0, specific heat. 

Subscripts 

L liquidus ; 
s, solidus. 

I. INTRODUCTION 

IN THIS paper we discuss the numerical solution of a 
model for the solidification of a dilute alloy. This is a 
moving boundary problem in which the equations of 
heat and mass transfer are coupled through the 
conditions at the phase boundary. Across this 

boundary there exist discontinuities in both heat 
content and concentration of impurity, the boundary 
temperature being related to the local impurity 
concentration. 

This physical situation is more complicated than 
that of the classical Stefan problem for phase 

changes in a pure substance [1,2]. There, numerical 
solutions can be obtained by the “fixed domain” or 
“enthalpy” method suggested by Rose [3], in which 
explicit tracking of the phase boundary is avoided. 
The crucial step is to write the equation of heat 
transfer in conservation form before discretization 
and it can then be proved [1,4] that suitable 
discretizations will converge to the unique weak 
solution associated with the conservation form. 

For the problem of a general dilute alloy, we do 

not even know of a weak formulation of the 

solidification problem, let alone any results about the 
convergence of fixed domain numerical methods. 

The only numerical analysis we have seen used a 

variational formulation [5]. 
This paper has two objectives, namely to suggest a 

fixed domain discretization of the problem and then 

to test this discretization on a class of problems 
where analytical solutions are available. First, in 

Section 2, we describe the physical problem in more 
detail and reformulate the equations in conservation 

form through the introduction of the chemical 
activity. Although this reformulation does not in 
general suggest a suitable definition of a weak 
solution to the problem, it does suggest the discreti- 
zation described in Section 3. In Section 4, we 

present the results of some numerical experimen- 
tation on this discretization. 

There is only one very special situation, namely 

when the diffusivity and the conductivity are func- 
tions of the activity and temperature respectively, 
when we have any right to hope that our discreti- 
zation will converge to a sensible physical limit. 

Fortunately, however, in a broader class of si- 
tuations, analytical similarity solutions have been 

given [6], with which we can compare our numerical 
results. The agreement is good enough to give some 

confidence in the applicability of our method to 
more general situations where similarity solutions do 
not exist. 

2. THE PHYSICAL PROBLEM 

We need to model the solidification of a metal 

containing a small concentration of impurity. For 

several metals and impurities this phenomenon may 
be described in terms of the equilibrium diagram in 
Fig. 1, where u denotes the temperature and c the 
concentration of the impurity. In a more general 
alloy solidification problem, where c may be larger, 
the solidus and liquidus may no longer be straight 
lines, but we will take them as straight in this paper. 

If the local values of c,u at some point in the 
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* 

FIG. I Typical equilibrium diagram for a dilute alloy 

material are such that c + k,u > 0 then the material 
is in the stable liquid phase, while if c+ k,u < 0, then 

the material is in the stable solid phase. Chemical 
equilibrium is not possible at values of c such that 

-k,u < c < -k,u. 
Throughout this paper we shall make the assump- 

tion that the material on either side of the phase 
boundary is in chemical equilibrium. Thus, assuming 

further that the temperature is continuous at the 
phase boundary, there is a concentration discon- 

tinuity there with 

c, = (k,lk,k,, (2.1) 

the constant k,!k, being known as the distribution 

coefficient. 
We consider a solidification process in which the 

impurity diffuses in both phases i = 1,2, i = 1 being 
the solid, and in which density changes are neglig- 

ible. In one space dimension the governing equations 

are then 

where D denotes the mass diffusion coefficient, K the 
thermal conductivity of the bulk material, and r~ the 
specific heat of this material. For simplicity, we shall 
takea = 1. 

At the phase change interface x = s(t) the equilib- 

rium conditions give 

n1 = n2, c, = -k,u,, c2 = -k,u, (2.4) 

and the conservation of heat and mass yields 

L 2 = - [K&4/8X] f, (2Sa) 

[cl? g = -[m/ax]: (2.5b) 

Here [,f]: = ,j-fi denotes the discontinuity in f 
between phases, and L is the latent heat of fusion of 
the bulk material, assumed constant. To complete 
the specification of the boundary value problem we 
require appropriate data initially and at the fixed 
boundaries. 

Motivated by the derivation of the weak for- 

mulation of the classical Stefan problem, we write 
the equations in conservation form (see Rose 1131). 
The liquid phase is defined by u+c/k, > 0, and the 
solid by u+c/k, < 0. Thus, in view of (2.5a), we 

define the enthalpy H as 

u$c:k, < 0, 

ufclk, > 0. 
(2.6) 

The condition of chemical equilibrium at the 

interface? ci = (kJk,)c,, is simply a statement that 

the chemical potential, or equivalently the chemical 
activity, is con!inuous across the phase change 
surface. For dilute solutions where the temperature 

range is not too large, the concentration of the 
impurity may be taken as proportional to its 
chemical activity c’ (see Guggenheim [7]), and so we 
have 

ci = bkivi (2.7) 

for some constant b. The interface condition cl/k, 
= c,/k, then reduces to ~‘i = L’~, and thus v, as well 

as u, is continuous across the phase boundary u + bv 
= 0. Although (2.7) in general only defines r~ at the 

phase boundary for the dilute alloys we are 
considering in which ki = const., we can define v 
globally by (2.7). Then the chemical activity and the 

concentration play the same roles in the mass- 
transfer problem as the temperature and enthalpy in 
the heat-transfer problem. (2.2) may now be written 

as 

ac. a 
‘=_ 

dt C?u 

with 

2, ufbv = 0 
1 

at x = s(t). 
Thus we have obtained the conservation forms 

with the relations 

; 

bk,v u+bv < 0, 

c = E[bk,v,bk,v] u+ bv = 0, 

bk,v u+bv > 0, 

(2.9) 

i 

U u+bu < 0, 

H= ~[u,u+L] u+bu=O, 

u+L u+bv > 0. 

Before discussing the numerical solution of (2.8), 

(2.9) let us make some remarks about a possible 
discretization in a very special case. If xi = K~(u) and 
0; = D:(v), we can use Kirchoff transformations to 
define 

i 

” 

i 

* 
cc rc(u’)du’, b = D’(v’) dv’. 

* . 
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Then (2.8) becomes although we can similarly derive both (25a,b) and 

(2.8a) i.e. 
[1;]: = [;I: = 0, (2.1 la) 

and (2.9) may be rewritten in terms of f~, c. Following 
Oleinik [8] we can now multiply these equations by 
test functions 4i and integrate twice by parts to 
motivate the definition of a weak solution of (2.8a), 
(2.9) with say, u, v prescribed on x = 0, 1, as a set of 
bounded measurable functions {H, c, 2, in} satisfying 
(2.9) rewritten, and such that both 

[u]: = [VI; = 0. (2.11b) 

The situation is worse still in the general coupled 
problem where K = tiJu,v), 0; = Di(u,v) are func- 
tions with possible discontinuities at the phase 
boundary. The Kirchoff transformation leading to 
(2.8a) is no longer available and then, after multiply- 
ing (2.8) by test functions 4i, it is only convenient to 
integrate once by parts, so that the equation 
analogous to (2.10) has as left-hand side 

1 

_ s 1 HdJl dx, (2.10) 
0 t=o 

and a similar integral equation involving c, G and 42 
are satisfied for all suitable &. Such 4i would be 
smooth functions for which &/ax, a2$Jax2, &pi/at 
exist and are continuous, and which satisfy &(x,t) 
= 0 on x = 0,l and &(x, T) = 0. 

Now in the case of a pure metal c = v = 0, it can 
be shown that the weak solution exists, is unique, 
and can be computed by implicit or explicit 
discretization of (2.8a), (2.9). Moreover it is classical 
away from the phase boundary, but across this 
boundary, the so-called “Rankine-Hugoniot” con- 
ditions can be obtained by local application of (2.10). 
These turn out to be simply (2.5a) and the condition 
that ic is continuous. For the case (2.10) with c f 0, 
however, we have been unable to prove either 
existence or uniqueness* for the weak solution, 

r 1 

J./ 
ffcb,_(?9,kiilldx&. 

0 0 at ax ‘ax 
Although we could still attempt to define a weak 
solution on this basis, only jumps of the form (2.5) 
would be assured, and there would be no guarantee 
that (2.11 b) would be satisfied. 

While a rigorous justification of a , numerical 
solution of (2.8), (2.9) based on the idea of a weak 
solution seems impossible, it is nonetheless of interest 
to test the performance of a naive discretization of 
(2.Q (2.9) in a case where (2.8a) does not apply. We 
can fortunately carry out such a test using 
Rubinstein’s [63 class of explicit similarity solutions 
where IC, D’ are constant save for jump discon- 
tinuities at the phase boundary. We will in fact find 
that (2.11b) holds at the phase boundary, although, 
as explained above, we have found no satisfactory 
explanation for this result. 

In order to describe our numerical discretization 
of (2.8), (2.9,) as simply as possible, we will henceforth 
assume that ~~ and 0; are constant in each phase, 
although they may have jump discontinuities at the 
phase boundary. 

3. THE NUMERICAL PROCEDURE 

In order to solve (2.8) and (2.9) by the type of “fixed domain” method discussed in [l, 31, it is necessary to 
invert (2.9) to give u, v in terms of H, c. This yields 

H H+c/k, < 0, clbk, H+c/k, < 0, 
li= 

( 
v= 

H-L H+c/k, > L, i clbk, H $ c/k, > L, 
(3.1) 

but gives no obvious information if H+c/k, > 0, and H +clk, < L. This interval corresponds to points 
between the liquidus and solidus lines in Fig. 1. 

We now describe two equivalent ways of determining u(H, c) if H + c/k, > 0, H + c/k, < L. [As u + bu = 0 
in this region, v(H,c) is immediately found if u(H,c) is known]. The first is based on physical arguments 
suggested by Chalmers [9]. Since the material cannot exist in equilibrium at these values of H,c, these are 
taken as “partitioned” values of H, c which represent an element of material of which a fraction ,f is solid and 
(1 -,f) liquid. The values of U, c,, c, for the element are compatible with local equilibrium. Thus we write 

c = c,f+ c, (1 -f’) 

H = u+(l-f)L 

where c, = -k, u, c, = - k,u. Eliminating es, c,, ,f yields 

vu*+[k,-r+)H]u+c=O (3.2) 

*An alternative approach based on the use ofvariational inequalities and monotone operators may be more successful in this 
respect (J. D. P. Donnelly, private communication). 
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and hence 

-.____ ___ (3.3) 

where we take the positive square root so that u is H on the sohdus, and H-L on the liquidus. 
An alternative argument rehes on the assumption that 14 is continuous across the moving boundary. Thus 

u = u(H, c) = constant for each material particle in the region between the solidus and the liquidus. Therefore 
the changes in H and c which result from the phase boundary moving a distance 6s through this material 
particle are related by 

where, from conservation of heat and mass, 

6H = Us, 6c = [c]&?s = (k, - k,)uSs. 

Hence 

yielding 

u = F[(k, -k,)uH-Lc], 

foranarbitraryfunctionF,andusingtheconditionthat boththesolidusandtheliquiduscurveslieonthissurfacein 
u, Ii, c space, we again obtain (3.3). 

Hence the inversion of (2.9) is taken to be (3.1) together with 

u = u*, t’= -u*Jb in H+c/k,-L < 0 < H+c/k,, (3.5) 

where u* is given by (3.3). 
An explicit finite difference scheme may be used for the solution of (2.8) with u, v defined in terms of H, c by 

(3.1) and (3.5), provided care is taken to ensure the scheme conserves heat and mass. If the mesh points 
(E- 1)6x, n6x, (n+ 1)6x he in the same phase the difference equations are 

and 

H ;+’ = H,“+(6t/6x2)~,m(~~+,-2~::+~~_:_) (3.6) 

,;+’ = c;+ (stjsx*)D:~~(~+, -2v~+tJ~..,) (3.7) 

where H,” = H(~~~, ~~t)~ = 0,. . . N, II = 1,. . . N, ~2, CT, or are defined similarly, and K:, Fnrn take the values 
appropriate to that phase. 

We require that the finite difference equations conserve heat and mass across the phase boundary. If (3.6) is 
used at all mesh points in the interior of the fixed domain, we see that on integrating (3.6), the change of heat 
content in an interval 6t is given by 

N - 1 N-l 

6.X c (If,“+’ -Hr) = &6x- c K;(u;+ ~-~~)-~(u~-u~-,) 
1 1 

H-l 

= cit/Sx c ($ -x;* 1 )(uy+ 1 -u::)+~~(ul-u~-,)-K;(U;-u~). 

Thus , unless icrn = IC”’ “+, for n = 1. . . N- 1, which is only possible if K% = K~, there will be a heat loss (or gain) 
at the phase boundary. Hence a m~ifi~ation of (3.6), and similarly (3.7), is necessary near the moving 
boundary. Near this boundary, the position of which may be determined by linear extrapolation on the 
values of u+ bu at the mesh points, a modified form of rc, D’ is needed. If s(m&) = &x+/i,, where 0 < h, < 
6.x, with the solid phase in x < s(t), the expressions for (~/~x)(K~u/~x) at nax and (n + 1)6x are replaced by 

= (l/bX’)[K*(U;+, -U~,-Kl(tf~-U~-,)] (3.8) 

and 

a atfm 
z c i “as n+, 

= (l/sx2)[K,(u~+;,-u~+,1)-K*(U~~,--~)] (3.9) 
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where K* is the modified thermal conductivity, with similar expressions for (a/ax)(D’av/ax). Best agreement 
with the analytical solution, described in the next section, is obtained using 

Ic* = (h,/dX)K, +(l -h,/6x)ic, 

rather than klrkZ or (pi +K*)/& together with a similar expression for D’*. 
At a mesh point where u,” + bar = 0, the equation 

;(KaU/dX); = (~/~X2)[K,(U~+,-~~)-K,(1C,m-U~-:_)] (3.10) 

is used. These finite difference replacements together yield a conservative scheme for the solution of (2.8) with 
(3.1) and (3.5). They form a “fixed domain” discretization, requiring no explicit application of the conditions 
(2Sa,b) at the phase boundary. 

4. RESULTS AND DISCUSSION 

We now consider the numerical solution of the one-dimensional solidification of a block of molten alloy, 
with uniform initial temperature and concentration distributions u0 = 1, c, = 0.1, occupying the region 
x > 0. At the initial instant the temperature at the face x = 0 is lowered to u = - 1, and we assume there is 
no mass flux out of the material. 

This problem was chosen because the analytical solution is known [6]. For our choice of initial and 
boundary conditions the solution is 

cl = -klu,, 

c2 = 0.1 -(k,u,+O.l) 
erfc[x/2(D,r)“2] 

erfc [B/(&)“*] 

ui = -l+(U,+l) 
erf[x/2(K-it)“*] 

> 
erf[B/(Ki )“‘I 

erfc[~/2(K~t)~“] 
u2 = 1 +(ns--l) erfc[p/(KZ)l/2]’ 

(4.1) 

where /3 is the root of 

s(t) = 2P(t)“2 I 

I - 0.1 (D,)“2 

’ k2(D2)1’2+8(rt)1’2(kl -k2)erfc[~/(D2)1’2]exp(gZ/D2) ’ -1 (4.2) 

and the constant phase change temperature u, is given by 

-0.1 (D,)“2 

US = k2(D2)“2+/l(n)1’2(kl -k2)erfc[j?/(D2)1’2] exp(p2/D2) 
(4.3) 

In the first example we choose 0; = 0; = ~~ = ICY 
= 1, k, = 1, k, = 2, b = 1, L = 1. Thus, using Di 
= Di/bk, D, = 1, D, = $ The resulting value of /3 is 
found from (4.2) to be 0.353. The solution was 
computed using the scheme described in Section 3, 
with St = 5 x 10-5, 6x = l/80. In Fig. 2(a),(b) the 
temperature and concentration history at the point 
x = 0.1 obtained from the numerical results is 
compared with the analytical solution, and it is seen 
that the agreement is reasonable. 

From (4.1)-(4.3) we see that the solution is 
independent of D,. The above calculation was 
therefore repeated with the choice 0; = a, 0; = 1, 
with results indistinguishable from those in Fig. 2. 

A further example, with a discontinuity in thermal 
conductivity at the phase boundary was also solved. 

With ICY = 1, ICY = 415, we find /I = 0.363, and the 
results obtained are shown in Fig. 3. 

The position of the moving boundary at any time 
may be estimated by extrapolation using the values 
of u+ bu (which is zero at the boundary) from one 
phase or the other. With linear extrapolation from 
the liquid phase, the error in the calculated position 
of the boundary compared with (4.1) is less than 5%, 
and less than half a mesh spacing. 

The slight oscillations of the numerical results seen 
in Fig. 2, and less clearly in Fig. 3, are caused by 
neighbouring mesh points passing through the 
region u + bv = 0. Comparison with calculations with 
6x = l/20, 6.x = l/40 suggests that these oscillations 
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\ AnalytIcal solution (4 I) 

o Numerical solution 
s(0.0201)~0.1 

(b) 
014 
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x 

FIG. 2. Temperature and concentration history at x = 0.1, FIG. 3. Enthalpy and concentration profiles at t = 0.02, 
showing the analytical solution (4.1) and numerical results, showing the analytical solution (4.1) and numerical results, 

forK1=k.t=l,D’,=D;=l. forh.1=1,~2=4,15,D’,=&D;=1. 

decrease in amplitude as the number of mesh points 
increases. The results shown in Figs. 2 and 3 were 
obtained in 43 s computing time on an ICL 1906A. 
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SUR LA SOLUTION NUMERIQUE DU PROBLEME DE LA 
SOLIDIFICATION D’UN ALLIAGE 

R&sum&On donne un modile de la solidification d’un alliage dilut: et pour lequel les Cquations des 
transferts de chaleur et de masse sont couplees par les conditions g la frontitre mobile des phases. Les 
kquations sont &rites sous une forme de conservation qui suggbre une mirthode pour trouver les solutions 
numiriques sans suivre explicitement la limite des phases. Bien que la mitthode ne puisse itre just&e 
rigoureusement, elle donne des rt?sultats qui se comparent favorablement aux solutions analytiques 

connues, dans des cas oi un bon accord peut ne pas gtre attendu. 
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ZUR NUMERISCHEN L&SUNG DES PROBLEMS EINER 
ERSTARRENDEN LEGIERUNG 

941 

Zusammenfassung-Es wird ein Model1 fur die Erstarrung einer verdiinnten Legierung beschrieben, in 
welchem die Gleichungen des Warme- und Stofftransports durch die Bedingungen der wandemden 
Phasengrenzflache gekoppelt sind. Die Gleichungen werden entsprechend den Erhaltungssiitzen 
umgeschrieben, und das fiihrt auf eine Methode zur numerischen Losung ohne ausdriickliche Verfolgung 
der Phasengrenzflache. Obwohl diese Methode nicht streng begriinc’et werden kann, lie&t sie Ergebnisse, 
welche mit bekannten analytischen Losungen gut vergleichbar sind, such fur FPlle, in denen gute 

Ubereinstimmung nicht zu erwarten ware. 

HWCJIEHHOE PEIBEHME 3AAAYbi 0 3ATBEPflEBAHBB CIIJIABA 

AHUOTIUUII- npeAJfOXteiia MOAeJIb 3aTBepAeeaHm W(HAKOI-0 CnnaBa, B KOTOpofi ypaenemn Tenno- 

H MacconepeHoCa cBK3aHbl qepes ycnosm Ha nonemmoii rpamue pasnena 4a3. YpmHemin, 3anH- 

CaHHbIe B i$opMe ypamieHHii coxpaneririn, n03nonrinH pa3pa6orar1, Meron HaxowleHm ~sicnemioro 
pemenwn 6e3 RBHO~O yGTa nepeMeueHHn rpaemm pa3Aena @a3. HecMoTpa Ha 0TcyTcTeHe cTpor0 

o6oCHOBaHHOii @OpMyAHpoBKH, AaHHblii MeTOA'llO3BOA~eT nOJIy'faTb p3yJIbTaTbl, KOTOpble XOpOIUO 

COrJIaCyWTCtl C H3BeCTHblMH aHiUIHTH'leCKHMW peUIeHHIMH 3aAalr. 


